
Using HPC Batch Systems Efficiently
HPC batch system is like traffic cop
Batch system has rules that determine which jobs run when
Rules can include:
- Fairshare (diminishing priority based on recent use)
- Quality of service (select users get more access or priority)
- Size (large parallel jobs get higher priority)
- Age (jobs waiting longer get higher priority)

Very important to request correct resources!
- # nodes
- # cores (per node)
- Memory
- # GPUs
- Licenses / filesystem GPU GPU

memory memory

CPU CPU
core core

Asking for more resources than you need slows everyone down!

Selecting HPC Resources
Questions to ask before submitting a job:
• Is the code serial or parallel?
• If parallel, how?
• How much memory do I need, is the default enough?
• Do I need a GPU?
• Are there any other resources I need to request?

Parallelism:
• Serial (one core)
• Shared-memory parallel (one node, multiple cores)
• Distributed-memory parallel (multiple nodes and cores)
• Hybrid

Memory use:
Batch systems often grant some amount of
memory per core allocated. e.g. for a 16-core
node, each core allocated may get ~1/16 of the
total memory per core allocation.

GPU use:
Be aware that GPUs are usually in demand so try
to use nodes with no GPUs if you don't need it.

Additional resources:
Keep in mind that some HPC clusters require you
to check out licenses for proprietary
software. Also, some require requests to access
some filesystems.

slurmstepd: error: Detected 1 oom_kill event in StepId=30869.0.
Some of the step tasks have been OOM Killed.
srun: error: ku45: task 4: Out Of Memory
srun: Terminating StepId=30869.0

Run out of memory

• Most HPC jobs are run in asynchronous batch jobs. Submit the job and wait until it runs and completes.

• Interactive jobs allow you to get a live session on a set of resources for running tests, debugging, understanding
resource usage, etc.

• In Slurm, this is achieved with salloc:

• Now I am on a node with 4 cores and 3 hrs walltime.

• There are two downsides to interactive jobs:
1. You may have to wait a long time to get the job started. Adding a command line for mail to be sent when a job

starts can help with this (--mail-type=BEGIN)
2. If you lose connection to the session, the job will die.

Interactive Jobs

[27 ewalter@kuro ~]$salloc -N 1 -n 4 -t 3:00:00
salloc: Granted job allocation 30548
salloc: Nodes ku36 are ready for job
[1 ewalter@ku36 ~]$

Serial vs. Parallel Jobs

#!/bin/tcsh
#SBATCH --job-name=serial
#SBATCH -N 1 –n 1
#SBATCH –mem=128G
#SBATCH -t 0:30:00

./a.out_serial

#!/bin/tcsh
#SBATCH --job-name=shrdparallel
#SBATCH -N 1 –n 8
#SBATCH –mem=128G
#SBATCH -t 0:30:00

./a.out_shmparallel

#!/bin/tcsh
#SBATCH --job-name=distparallel
#SBATCH -N 4 --ntasks-per-node=20
#SBATCH -t 0:30:00

srun a.out

Serial job : uses one core on one node

Shared-memory parallel : uses
multiple cores on one node ;
OpenMP

Distributed-memory parallel: multiple
cores on multiple nodes. MPI or
MPI+OpenMP (hybrid)

Node #1 Node #2

#!/bin/bash
#SBATCH --job-name=finaltests
#SBATCH --nodes=4 --ntasks-per-node 32
#SBATCH --time=1-0

for i in `cat LIST`
do

 echo "starting run $i `date`"
 mkdir run_$i
 cd run_$i
 srun ./a.out < input_$i > OUTPUT_$i
 echo "$i run finished `date`"

 echo "run $i energy = "
 grep ENERGY OUTPUT_$i

 # gzip output file
 gzip OUTPUT_$i

 cd ..
done

This script uses bash syntax

Loop over list of tokens from "LIST"

Print which run I am starting with date
Make directory for run
Cd into directory
Run calculation

Print the energy of this calculation

Gzip the output file

Go back up one level

More Advanced Script

[33 ewalter@kuro ~]$cat LIST
1
3
5
6

[34 ewalter@kuro ~]$ls input*
input_1 input_2 input_3 input_4
input_5 input_6 input_7

Job Arrays in SLURM

#!/bin/tcsh
#SBATCH --job-name=multi-serial
#SBATCH -N 1 –n1
#SBATCH –mem=128G
#SBATCH -t 0:30:00
#SBATCH –a 1-4

mkdir job_$SLURM_ARRAY_TASK_ID

cd job_$SLURM_ARRAY_TASK_ID

../a.out_serial input_$SLURM_ARRAY_TASK_ID

Job arrays

Job arrays allow you define a range of values to use in a series of related jobs.

#SBATCH –a 1-4

Will submit 4 jobs with suffixes 1 through 4. In each job then the following
variables are defined for you:

SLURM_ARRAY_TASK_ID - Job array ID (index) number.
SLURM_ARRAY_JOB_ID - Job array's master job ID number.
SLURM_ARRAY_TASK_COUNT - Total number of tasks in a job array.
SLURM_ARRAY_TASK_MAX - Job array's maximum ID (index) number.
SLURM_ARRAY_TASK_MIN - Job array's minimum ID (index) number.
SLURM_ARRAY_TASK_STEP - Job array's index step size.

These values can then be used to run jobs with input_1 through input_4.

USE a chat bot for scripts from scratch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

