Using HPC Batch Systems Efficiently

HPC batch system is like traffic cop

Batch system has rules that determine which jobs run when
Rules can include:

- Fairshare (diminishing priority based on recent use)

- Quality of service (select users get more access or priority)
- Size (large parallel jobs get higher priority)

- Age (jobs waiting longer get higher priority)

— A CPU CPU

Very important to request correct resources!

- #nodes

- # cores (pernode) memory memory
- Memory

- #GPUs

- Licenses/ filesystem

Asking for more resources than you need slows everyone down!

Selecting HPC Resources

Questions to ask before submitting a job:

Is the code serial or parallel?
@ 7 If parallel, how?
? 7 How much memory do | need, is the default enough?
Do | need a GPU?

© O O © g Are there any other resources | need to request?

Parallelism:
e Serial (one core)
 Shared-memory parallel (one node, multiple cores)

* Distributed-memory parallel (multiple nodes and cores)
e Hybrid

Memory use:

Batch systems often grant some amount of
memory per core allocated. e.g.fora 16-core
node, each core allocated may get ~1/16 of the
total memory per core allocation.

GPU use:
Be aware that GPUs are usually in demand so try

to use nodes with no GPUs if you don't need it. Run out of memo ry

slurmstepd: error: Detected 1 oom kill event in StepId=30869.0.
Additional resources: Some of the step tasks have been OOM Killed.

Keep in mind that some HPC clusters require you
to check out licenses for proprietary

software. Also, some require requests to access
some filesystems.

srun: error: ku45: task 4: Out Of Memory
srun: Terminating StepIld=30869.0

Interactive Jobs

Most HPC jobs are run in asynchronous batch jobs. Submitthe job and wait until it runs and completes.

Interactive jobs allow you to get a live session on a set of resources for running tests, debugging, understanding
resource usage, etc.

In Slurm, this is achieved with salloc:

[27 ewalter@kuro ~]$salloc -N 1 -n 4 -t 3:00:00
salloc: Granted job allocation 30548

salloc: Nodes ku36 are ready for job
[1 ewalter@ku36 ~ 1%

Now | am on a node with 4 cores and 3 hrs walltime.

There are two downsides to interactive jobs:
1. You may have to wait a long time to get the job started. Adding a command line for mail to be sent when a job
starts can help with this (--mail-type=BEGIN)
2. Ifyou lose connection to the session, the job will die.

#!/bin/tcsh

#SBATCH --job-name=serial
#SBATCH -N 1 -n 1

#SBATCH -mem=128G

#SBATCH -t 0:30:00

./a.out_serial

#!/bin/tcsh

#SBATCH --job-name=shrdparallel

#SBATCH -N 1 -n 8
#SBATCH -mem=128G
#SBATCH -t 0:30:00

./a.out_shmparallel

#!/bin/tcsh

#SBATCH --job-name=distparallel
#SBATCH -N 4 --ntasks-per-node=20

#SBATCH -t 0:30:00

srun a.out

Serial vs. Parallel Jobs

Serial job : uses one core onone node

Shared-memory parallel : uses
multiple cores on one node;
OpenMP

Distributed-memory parallel: multiple
cores on multiple nodes. MPIl or
MPI+OpenMP (hybrid)

Node #1

Node #2

More Advanced Script

#!/bin/bash

#SBATCH --job-name=finaltests

#SBATCH --nodes=4 --ntasks-per-node 32
#SBATCH --time=1-0

for 1 in “cat LIST
do
echo "starting run $i “date™"
mkdir run_$i
cd run_$i
srun ./a.out < input $i > OUTPUT_$i
echo "$i run finished " date™ "

echo "run $i energy =
grep ENERGY OUTPUT $i

gzip output file
gzip OUTPUT_$i

cd ..

This script uses bash syntax

Loop over list of tokens from "LIST"
Print which run I am starting with date
Make directory for run

Cd into directory
Run calculation

Print the energy of this calculation

Gzip the output file

Go back up one level

[33 ewalter@kuro ~ J$cat LIST
1

3
)
6

[34 ewalter@kuro ~]$ls input*
input_1 input 2 input 3 input 4
input_5 input_6 input_7

Job arrays

#!/bin/tcsh

#SBATCH --job-name=multi-serial
#SBATCH -N 1 -nl

#SBATCH -mem=128G

#SBATCH -t 0:30:00

mkdir job_$SLURM ARRAY_TASK_ID

cd job_$SLURM_ARRAY TASK_ID

../a.out_serial input_$SLURM_ARRAY_TASK_ID

Job Arrays in SLURM

Job arrays allow you define a range of values to use in a series of related jobs.
#SBATCH -a 1-4

Will submit 4 jobs with suffixes 1 through 4. In each job then the following
variables are defined for you:

SLURM_ARRAY_TASK_ID - Job array ID (index) number.
SLURM_ARRAY_JOB_ID - Job array's master job ID number.
SLURM_ARRAY_TASK_COUNT - Total number of tasks in a job array.
SLURM_ARRAY_TASK_MAX - Job array's maximum ID (index) number.
SLURM_ARRAY_TASK_MIN - Job array's minimum ID (index) number.
SLURM_ARRAY_TASK_STEP - Job array's index step size.

These values can then be used to run jobs with input_1 through input_4.

USE a chat bot for scripts from scratch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

